ON MEASURE AND CATEGORY[†]

ΒY

SAHARON SHELAH Institute of Mathematics and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel; and EECS and Mathematics Departments, University of Michigan, Ann Arbor, MI 48109, USA

ABSTRACT

We show that under ZF + DC, even if every set of reals is measurable, not necessarily every set of reals has the Baire property. This was somewhat surprising, as for the Σ_2^1 set the implication holds.

Recently, following a proof in Raisonnier [1] which follows Shelah [3] §5, Raisonnier and Stern have proved: if the union of any κ zero measure sets (of reals) has measure zero *then* the union of κ meager sets (in "2) is meager; and if every Σ_2^1 set of reals is (Lebesgue) measurable then any Σ_2^1 set of reals has the Baire property, and M.U.P.-perfect set theorem. Those results were independently proved by Bartosynski. The following answers the question they have asked. I thank Magidor for a very helpful discussion.

THEOREM. If in L there is an inaccessable cardinal, then in some forcing extension L[G] of L the following holds: ZF + DC + "Every set of reals is measurable" + "there is a set of reals without the Baire property" + "there is an uncountable set of reals with no perfect subset."

Proof.

(1) Scheme. We start with V = L, κ an inaccessible (or just $V \models ZFC + "\kappa$ strongly inaccessible"). We want to build a forcing notion *B*, which will be just the Levi collapse of κ to \aleph_1 which Solovay used, and a special set *P* of *B*-names of reals. Later we force by *B*, let *G* be the generic set, $P[G] = \{r[G] : r \in P\}$

[†] This research was partially supported by an NSF grant and the U.S.-Israel Binational Science Foundation.

Received November 15, 1983 and in revised form January 17, 1985

and the desired universe is the family of sets which hereditarily are definable in V[G] = L[G], from a real, an ordinal and P[G].

(2) Notation. Here a real is a function from ω to ω . We say r_1 dominates r_2 if for every large enough n, $r_2(n) \leq r_1(n)$. Call $r \in {}^{\omega}\omega$ quasi-generic over V, if no $\tau' \in ({}^{\omega}\omega)^V$ dominates r. In forcing notions, bigger means giving more information; using a Boolean algebra we omit the zero and invert the order so 1 becomes the minimal element.

(3) Definition. We define what is an approximation: it is a pair (B, P) such that: B is a complete Boolean algebra of power $< \kappa$ (and $B \in H(\kappa)$ for simplicity), P a set of B-names of reals (here functions from ω to ω), more formally such a B-name \underline{r} consists of ω maximal antichains of B; $\langle b_{n,i}^{\underline{r}}: i < \alpha_n \rangle$, and function $f^{\underline{r}}$ such that $b_{n,i}^{\underline{r}} \Vdash \underline{r}(n) = f_{-}^{\underline{r}}(n, i)^{\underline{r}}$. Let AP be the set of approximations.

(4) Definition. We define a partial order on (AP): $(B_1, P_1) \leq (B_2, P_2)$ if: $B_1 \ll B_2$, i.e., B_1 is a complete (Boolean) subalgebra of B_2 , $P_1 \subseteq P_2$, and if $\underline{r} \in P_2 - P_1$ then \Vdash_{B_2} " \underline{r} is quasi generic over V^{B_1} ".

Clearly:

(4A) \leq is a partial order,

(4B) if $\langle (B_i, P_i) : i < \alpha \rangle$ is increasing *then* it has a natural upper bound $\bigcup_{i < \alpha} (B_i, P_i) \stackrel{\text{def}}{=} ((\bigcup_{i < \alpha} B_i)^c, \bigcup_{i < \alpha} P_i)$ (where the *c* denotes completion).

(5) Let us force with AP, and get a generic set H; clearly no cardinal is collapsed or changes its cofinality, and no bounded subset of κ is added. Let

$$B^{H} = \bigcup \{B : (\exists P)[(B, P) \in H]\}, P^{H} = \bigcup \{P : (\exists B)[(B, P) \in H]\}.$$

Easily B^H is a complete Boolean algebra of power κ , collapsing any $\lambda < \kappa$ to \aleph_0 , satisfying the κ -chain condition, and P is a set of B-names, and $[(B, P) \in H \Rightarrow B$ is a complete subalgebra of B^H and for $\underline{r} \in P$, \Vdash_{B^H} " \underline{r} is a real"].

(6) Next, over L[H] force by B^{H} , get a generic set G, and let $V^* = \{a \in L[H, G] : a \text{ is hereditarily definable from a real, } H$, an ordinal and $P[H, G]\}$ where $P[H, G] = \{r[G] : r \in P^{H}\}$. By Solovay [4], $V^* \models "ZF + DC + \kappa$ is \aleph_1 ".

(7) $V^* \models \overset{\circ}{\mathcal{P}}[H, G]$ is an uncountable set of reals which contains no perfect set".

The first part is by the genericity of H. For the second part, suppose not, then

for some $p \in B^{H}$, and B^{H} -name T of a downward closed perfect subset of ${}^{\omega >}\omega$, $L[H] \models "p \Vdash_{B^{H}}$ every branch of T is in P[H, G]".

As B^H satisfies the κ -chain condition, for some $(B_0, P_0) \in H$, \underline{T} is a B_0 -name, $p \in B_0$ (remember H is directed) so w.l.o.g. $(B_0, P_0) \Vdash_{AP}$ "in $L[\underline{H}]$, $p \Vdash_{B^H}$ (every branch of \underline{T} is in $\underline{P}[H, \underline{G}]$)".

We find $B_1, B_0 \ll B_1 \in H(\kappa)$, and a B_1 -name r of a branch of T, which is not in $L[H]^{B_0}$. Then $(B_0, P_0) \leq (B_1, P_0) \in AP$ and $(B_1, P_0) \Vdash_{AP} "p \Vdash_{B''} (r$ is a branch of T and $r \notin P[H, G]$)" (the $r \notin P[H, G]$ holds because, for any $s \in P^H$, either s is a B_0 -name and then cannot be forced to be equal to r by its choice, or $s \notin P_0$, hence, if $(B_1, P_0) \in H$, s is forced to be quasi-generic over $L[H]^{B_1}$ (equivalently over L^{B_1}), hence cannot be equal to any member of $V[H]^{B_1}$, in particular to r).

(8) $V^* \models \cdots \omega - P[H, G]$ is of the second category in every $N_s = \{r \in \omega : r \upharpoonright l(s) = s\}$ $(s \in \omega \otimes \omega)$.

The proof is similar to (7) for we could have chosen r a B_1 -name of a real in N_s , generic over L^{B_0} equivalently over $L[H]^{B_0}$.

(9) Remember $G \subseteq B^H$ is generic over L[H]. Now $V^* \models ``P[H, G]$ is of the second category in every N_s $(s \in {}^{\omega >} \omega)$ ''. We proceed as in (8), the only difference is that we use $(B_1, P_0, \bigcup \{\underline{r}\})$ (instead of (B_1, P_0)) where \underline{r} is a B_1 -name of a real generic over V^{B_0} . The point is that as \underline{r} is generic (hence quasi-generic) over V^{B_0} , clearly $(B_0, P_0) \leq (B_1, P_0 \cup \{\underline{r}\})$.

(10) The main point: $V^* \Vdash$ "every set of reals is measurable".

Let $A \in V^*$, $A \subseteq \mathbb{R}^{V^*} = \mathbb{R}^{L[H,G]}$, so there is a formula $\varphi(x, , ,)$ and $AP * B^H$ -name r of a real and ordinal α such that

$$A = \{x \in \mathbf{R} : L[H, G] \models \psi[x, r[H, G], \alpha, P]\}.$$

As AP is κ -complete, $B^{\underline{H}}$ satisfies the κ -chain condition, clearly there is $(B_0, P_0) \in H$ such that $(B_0, P_0) \Vdash_{AP}$ " $\underline{r} = \underline{s}, \underline{r}$ a B_0 -name of a real". We know that almost all reals of V^* (in the measure sense) are random over $L[H]^{B_0}$ (as for any $(B, P) \in AP, (B * Amoeba, P)$ is $\geq (B, P)$ (and is in AP)). So as in Solovay [4], it is enough to prove:

(*) if $B_0 \ll B_1^l \ll B_2^l$, $(B_0, P_0) \le (B_2^l, P_2^l)$, B_1^l/B_0 is random real forcing, for l = 1, 2 and f is an isomorphism from B_1^1 onto B_1^2 , $f \upharpoonright B_0$ = the identity, then we can amalgamate in AP (B_2^1, P_2^1) , (B_2^2, P_2^2) over f

[i.e., there is $(B, P) \in AP$ and isomorphisms g_l from B_2^l onto B_2^{l+2} mapping P_2^l onto P_2^{l+2} , such that $(B_2^{l+2}, P_2^{l+2}) \leq (B, P)$, and $g_2 f = g_1 \upharpoonright B_1^l$. [Note that where

Solovay uses actual automorphism of B^{H} , we use automorphism of names, i.e., its genericity; it doesn't matter.] For this we need

(11) Key Fact. If $(B_1, P_1) \leq (B_3, P_3)$, $B_1 \ll B_2 \ll B_3$, B_2/B_1 is random real forcing, then $(B_1, P_1) \leq (B_2, P_1) \leq (B_3, P_3)$.

Proof of Key Fact. The first inequality is trivial; for the second we have to prove: if $\underline{r} \in P_3 - P_1$ then \Vdash_{B_3} " r_3 is not dominated by any real in L^{B_2} ". However it is well known that every $x \in ({}^{\omega}\omega)^{L^{B_2}}$ is dominated by some $x^1 \in ({}^{\omega}\omega)^{L^{B_1}}$ [as B_2/B_1 is random real forcing] and \underline{r} is not dominated by x^1 as $(B_1, P_1) \leq (B_3, P_3)$.

(12) Proof of (*) of (10) from the Key Fact. We can find B_2^3 ($\in H(\kappa)$) and g such that $B_1^2 \ll B_2^3$, g an isomorphism from B_1^2 onto B_2^3 extending f, and $B_2^3 \cap B_2^2 = B_1^2$.

Let

$$Q = \{(p_2, p_3): p_2 \in B_2^2, p_3 \in B_2^3, \\ \text{and for some } r \in B_1^2, \\ (\forall q \in B_1^2) [r \leq q \rightarrow (r, p_2 \text{ are compatible in } B_2^2 \text{ and} \\ r, p_3 \text{ are compatible in } B_2^3)]\}$$

with the order:

$$(p_2, p_3) \leq (p'_2, p'_3)$$
 iff $p_2 \leq p'_2, p_3 \leq j_3$.

We identify $(p_2, 1)$ with p_2 , $(1, p_3)$ with p_3 . Now (as forcing notions) $B_2 \ll Q$, $B_2^3 \ll Q$, and let B be the completion of Q (to a Boolean algebra); now (see e.g. [3] §6) $B_2^2 \ll B$, $B_2^3 \ll P$ (and elements of $B_2^3 - B_1^2$, $B_2^2 - B_1^2$ are not identified with elements of B_2^2 , B_2^3 resp.). Let P_2^3 be the image under g of P_2^1 , and $P = P_2^2 \cup P_2^3$. We choose $g_1, g_2, B_2^3, P_2^3, B_2^4, P_2^1$ in (*) as id, g, $B_2^3, P_2^3, B_2^2, P_2^2$ here resp. What we want is $(B_2^2, P_2^2) \leq (B, P)$, $(B_2^3, P_2^3) \leq (B, P)$. By the symmetry in the situation it is enough to prove:

(**) if $r \in P - P_2^2$, then in $L[H]^B$, r is quasi-generic over $L[H]^{B_2^3}$.

By the Key Fact (11), \underline{r} is quasi-generic over $L[H]^{B_1^2}$. Let $G_1^2 \subseteq B_1^2$ be generic over L[H]. Now in $L[H, G_1^2]$, B/G_1^2 is equivalent to $(B_2^2/G_1^2) \times (B_2^3/G_1^2)$, and \underline{r} is (essentially) a B_2^2/G_1^2 -name of a real. Let \underline{s} be a (B_2^3/C_1^2) -name of a real, and it suffices to prove

(***) in $L[H, G_1^2]$, \Vdash_{B/G_1^2} "r is not dominated by s".

If not, then for some $(p_2, p_3) \in (B_2^2/G_1^2) \times (B_2^3/G_1^2)$, and $k < \omega$,

S. SHELAH

$$(p_2, p_3) \Vdash_{B/G_1^2} (\forall n) (k \leq n < \omega \rightarrow r(m) \leq s(n))''.$$

For every $l < \omega$ there are $m_l < \omega$ and p_3^l , $p_3 \le p_3^l \in B_2^3/G_1^2$, $p_3^l \Vdash_{B_2^3/G_1^2}$ " $\underline{s}(l) = m$ ". Clearly $\langle m_l : l < \omega \rangle$ is in $L[H, G_1^2]$ hence $p_2 \not\nvDash_{B_2^2/G_1^2}$ " $(\forall l)$ $(k \le l < \omega \rightarrow \underline{r}(l) \le m_l$ ". Hence for some p_2^1 , $p_2 \le p_2^1 \in B_2^2/G_1^2$ and $l, k < l < \omega$, $p_2 \Vdash$ " $\underline{r}(l) > m_l$ ". Now $(p_2^1, p_3^l) \in (B_2^2/G_1^2) \times (B_2^3/G_1^2)$ contradicts the choice of (p_2, p_3) and k. So we have proved (**) hence (*) of (10).

REMARK. What happens if, in the theorem, we change in the conclusion $V^* \models$ "every set of reals has the Baire property"?

It seems that a different method is necessary (non- κ -chain condition).

REFERENCES

1. J. Raisonnier, A mathematical proof of S. Shelah's theorem on the measure problem and related results, Isr. J. Math. 48 (1984), 48-56.

2. J. Raisonnier and J. Stern, On the relationship between measure and category, to appear.

3. S. Shelah, Can you take Solovay's inaccessible away? Isr. J. Math. 48 (1984), 1-47.

4. R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56.