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ABSTRACT 

We show that under ZF ~-DC, even if every set of reals is measurable, not 
necessarily every set of reals has the Baire property. This was somewhat 
surprising, as for the x~ ~_~ set the implication holds. 

Recently, following a proof in Raisonnier [1] which follows Shelah [3] §5, 

Raisonnier and Stern have proved: if the union of any K zero measure sets (of 

reals) has measure zero then the union of K meager sets (in ~2) is meager; and if 

every 1£~ set of reals is (Lebesgue) measurable then any 1£~ set of reals has the 

Baire property, and M.U.P.-perfect set theorem. Those results were indepen- 

dently proved by Bartosynski. The following answers the question they have 

asked. I thank Magidor for a very helpful discussion. 

THEOREM. I f  in L there is an inaccessable cardinal, then in some forcing 

extension L[G] of L the following holds: Z F  + DC +"Every set of reals is 

measurable" + "there is a set of reals without the Baire property" + "there is an 

uncountable set of reals with no perfect subset." 

PROOF. 

(1) Scheme. We start with V =  L, K an inaccessible (or just V ~ Z F C + " K  

strongly inaccessible"). We want to build a forcing notion B, which will be just 

the Levi collapse of K to 81 which Solovay used, and a special set P of B-names 

of reals. Later we force by B, let G be the generic set, P[G] = {r[G]  : r C P} 
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and the desired universe is the family of sets which hereditarily are definable in 

V[G] = LIG], from a real, an ordinal and P[G]. 

(2) Notation. Here a real is a function from o) to o9. We say rt dominates r2 if 

for every large enough n, r2(n)<= r~(n). Call r E"o) quasi-generic over V, if no 

~-'E (~o) v dominates r. In forcing notions, bigger means giving more informa- 

tion; using a Boolean algebra we omit the zero and invert the order so 1 becomes 

the minimal element. 

(3) Definition. We define what is an approximation: it is a pair (B, P) such 

that: B is a complete Boolean algebra of power < ¢ (and B E H(K) for 

simplicity), P a set of B-names of reals (here functions from ~o to o)), more 

formally such a B-name r consists of w maximal antichains of B; (b~" i < a.) ,  

and function f5 such that b;.~lF r ( n ) =  f'-(n, i)". Let AP be the set of approxi- 

mations. 

(4) Definition. We define a partial order on (AP): (B1, P,)_-< (B2, P2) if: 

Be ~ B2, i.e., B~ is a complete (Boolean) subalgebra of B2, P, _C P2, and if 

r E P 2 - P t  then IF.~"r is quasi generic over V ~,''. 

Clearly: 

(4A) =< is a partial order, 

(4B) if ((B.P~):i<ol) is increasing then it has a natural upper bound 
U,<,~ (B,, P,) def c =((U~<~B,) ,  U~<.P~) (where the c denotes completion). 

(5) Let us force with AP, and get a generic set H ;  clearly no cardinal is 

collapsed or changes its cofinality, and no bounded subset of K is added. Let 

B ' = U ( B : ( 3 P ) [ ( B , P ) @ H I } ,  P ' =  U{P:(BB)[(B,P)EH]}. 

Easily B "  is a complete Boolean algebra of power K, collapsing any A < K to ~o, 

satisfying the K-chain condition, and P is a set of B-names, and [(B, P) E H 

B is a complete subalgebra of B "  and for r E P, IFB,, " r  is a real"]. 

(6) Next, over L[H] force by B" ,  get a generic set G, and let V * =  

{a E L[H,G]:a is hereditarily definable from a real, H, an ordinal and 

P[H, O]} where P[H, G] = {r[G]" r E P ' } .  By Solovay [4], V* ~ " Z F + D C +  

K is ~1". 

(7) V*~"P[H, G] is an uncountable set of reals which contains no perfect 

set". 

The first part is by the genericity of H. For the second part, suppose not, then 
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for some p E B",  and B"-name T of a downward closed perfect subset of '°>to, 

L [ H ] ~ " p  IFB,, every branch of T is in P[H, G]" .  

As B "  satisfies the K-chain condition, for some (Bo, P(j) E I4, T is a B.-name, 

p E B0 (remember H is directed) so w.l.o.g. (B., Po) IFAp "in L [H], p IFR- (every 

G)" branch of T is in P[H, _ ] . 

We find B~, Bo <~ Bl E H(K), and a B~-name r of a branch of T, which is not in 

L[H] r~''. Then (Bo, Po) --< (B~, Po) E AP and (B~, Po)IFA, "p IFH,, (r is a branch of T 

and rff P I g  GI)" (the rff P'[g Gl holds beca.se, for any s E P",  either 8 is a 

Bo-name and then cannot be forced to be equal to [ by its choice, or { ff P., 

hence, if (B,, P(.) E/-/, s is forced to be quasi-generic over L [H] B, (equivalently 

over L~.), hence cannot be equal to any member of V[H] B', in particular to r). 

(8) V * ~ " % o - P [ H , G ] "  is of the second category in every N~ = 

{r E ~w " r r l(s) = s} (s ~ ~0 , ) .  
The proof is similar to (7)[or we could have chosen r a Bl-name of a real in 

N~, generic over L ~' equivalently over L [H] ~". 

(9) Remember G C_B t' is generic over L[H]. Now V* ~ " P [ H ,  G] is of the 

second category in every N~ (s ~ > o ~ ) " .  We proceed as in (8), the only 

difference is that we use (B,, Po, U{r})(instead of (B~, Po)) where r is a B r n a m e  

of a real generic over V B''. The point is that as r is generic (hence quasi-generic) 

over V B,,, clearly (B,, Po) =< (Bl, Po U {r}). 

(10) The main point: V* IF"every set of reals is measurable". 

Let A E V * ,  AC_R v ' = R  ~4"~1, so there is a formula ¢(x, , , ) and 

AP*B~l-name r of a real and ordinal c~ such that 

A ={x Ell , :  L[H, G]b  qJix, r[H, GI, ~, PII- 

As AP is K-complete, BY satisfies the K-chain condition, clearly there is 

(Bo, Po) ~ H such that (Bo, P.) IFAe" r = s, r a B0-name of a real". We know that 

almost all reals of V* (in the measure sense) are random over L [H] B° (as for any 

(B, P) E AP, (B * Amoeba, P) is _-> (B, P) (and is in AP)). So as in Solovay [4], it 

is enough to prove: 

l = B t t (*) if Bo~Bt~<~B2, (Bo, Po)<(  2, P2), B~dBo is random real forcing, for 
1 2 l = 1, 2 and [ is an isomorphism from B 1 onto B~, [ [ Bo = the identity, 

then we can amalgamate in AP (B~, P~), (B~, P~) over [ 

[i.e., there is (B, P ) E  AP and isomorphisms g~ from B~ onto B~ +~ mapping P~ 
DI+2 1 + 2  onto 1 2  , such that (B2 ,p~+2)~ (B, P), and g f f  = g~ [B[]. [Note that where 
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Solovay uses actual automorphism of B ' ,  we use automorphism of names, i,e., 

its genericity; it doesn't matter.] For this we need 

(11) Key Fact. If (B,,P,)~(B3, P3), BI<°B2<°B.~, B2/BI is random real 

forcing, then (B,, P~) =< (B2, P,) _-< (B3, P3). 

Proof of Key Fact. The first inequality is trivial; for the second we have to 

prove: if r E P3 - P1 then I~-.~ "r3 is not dominated by any real in L ~'''. However 

it is well known that every x E (~w) L"~ is dominated by some x ' E  (ow) ~"' [as 

B,JB~ is random real forcing] and r is not dominated by x ~ as (B~, P~) _-< (B3, P~). 

(12) Proof of (*) of (10) from the Key Fact. We can find B~ (E  H(K)) and g 

such that B~<oB~, g an isomorphism from B( onto B 3 extending f, and 
B 3 B 2 B~. 2 ~  2 ~ 

Let 

O = {(p2,p~): p2EB~, p3EB~,  

and for some r E B~, 

(Vq E B~)[r =< q --> 

with the order: 

(r, p: are compatible in B 2 and 

r, p3 are compatible in B3)]} 

(p2, p3) = < (p', p3)' if[ p2 ~"~ p;, 103=3..~t 

We identify (p2, 1) with p2, (1,p3) with p3. Now (as forcing notions) B2"~ O, 

B~ ,~ Q, and let B be the completion of O (to a Boolean algebra); now (see e.g. 

B 2 - B 1, B2 B ~ are not identified with [3] §6) B S , ~ B , B  3 , ~ P ( a n d e l e m e n t s o f  3 2 2_ 2 

elements of B~, B 3 resp.). Let P~ be the image under g of P~, and P = P~U p3. 
We choose gl, g2, B 3 p3 4 p,  :, 2, B2, : in (*) as id, g, B 3, P~, B 22, P~ here resp. What we 

B 2 3 3 want is ( 2, P~) --< (B, P), (B2, P2) = (B, P). By the symmetry in the situation it is 

enough to prove: 

(**) if r E P -  P~, then in L [H] B, r is quasi-generic over L [H] 8~'. 

By the Key Fact (11), r is quasi-generic over L [H] B~. Let G~ _C B~ be generic 

over L[H]. Now in L[H, Gi], B/G~ is equivalent to (B~/G-,) x (BjG,), and r is 

(essentially) a B~/G~-name of a real. Let s be a (B~/C~)-name of a real, and it 

suffices to prove 

(***) in L[H, G~], It-~/~"r is not dominated by s" .  

2 2 "~ 2 If not, then for some (p2,p3)E(B2/G~)x (Bi/G~), and k < ~0, 
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(p2, p3) IFBj~, " ( V n ) ( k  _-< n < to ~ r(m)_-< s (n))".  

For  every l < to there are m~ < to and p3, p3 = p 3  • B2/GI ,  p3 IFBj~i s ( l )  -- m " .  

Clearly (m~ : I < to) is in L [ H ,  G~] hence p2 ~zB~,/o~ "(VI)  

(k =< 1 < to --~ r ( l ) =  < m,)".  H,ence for some p~, p 2 < = p ~ B ~ / G ~  a n d / ,  k < 1 < to, 
1 2 ~ B 3 p 2 1 F " r ( 1 ) > m , " .  Now ( p ~ , p ~ ) E ( B ~ / G i ) x ( ~ / G i )  contradicts  the choice of 

(p2,p~) and k. So we have proved (**) hence  (*) of (10). 

REMARK. What  happens  if, in the theorem,  we change in the conclusion 

V * ~ " e v e r y  set of reals ha,; the Baire p r o p e r t y " ?  

It seems that a different me thod  is necessary (non-K-chain condit ion).  
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